


2



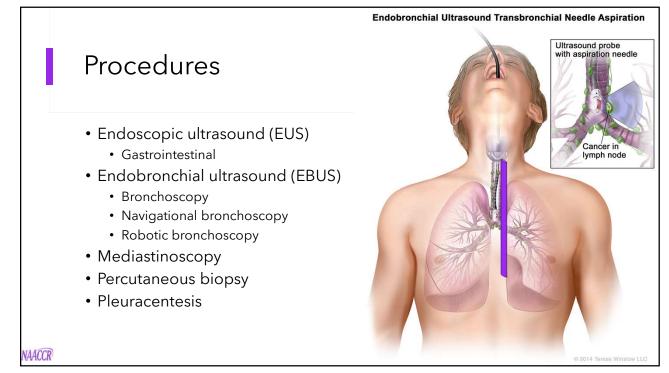


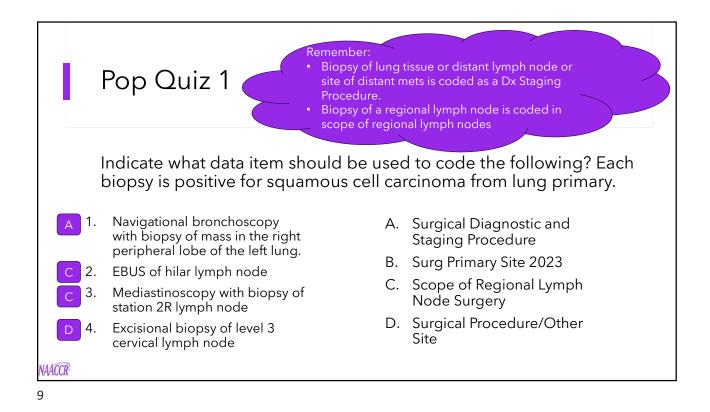


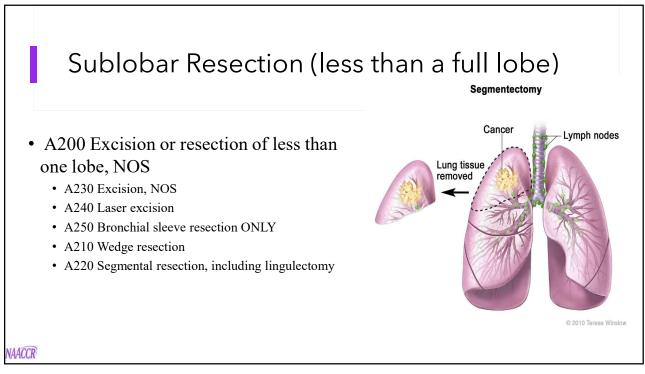


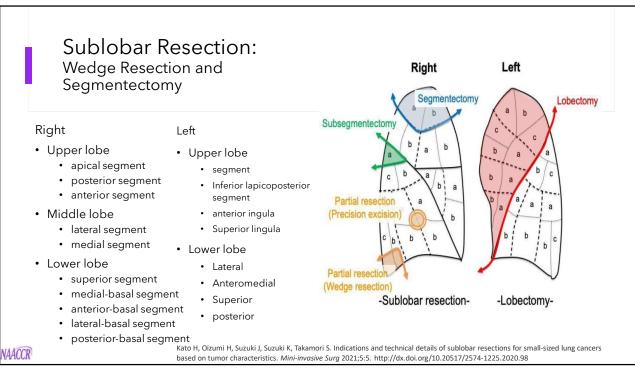
NAACCR 2023-2024 Monthly Webinar Series

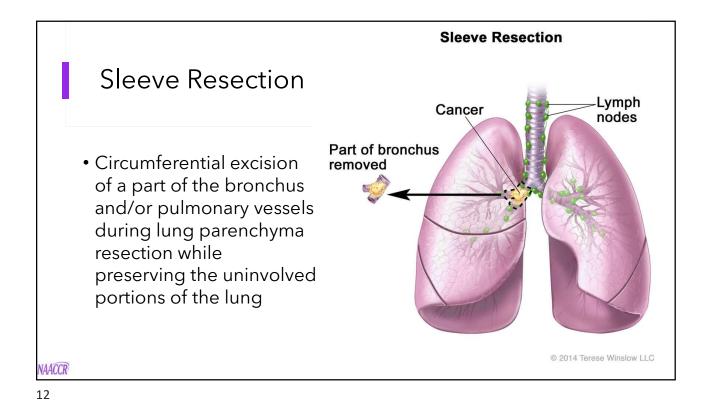
#### Lung-RADS® v2022

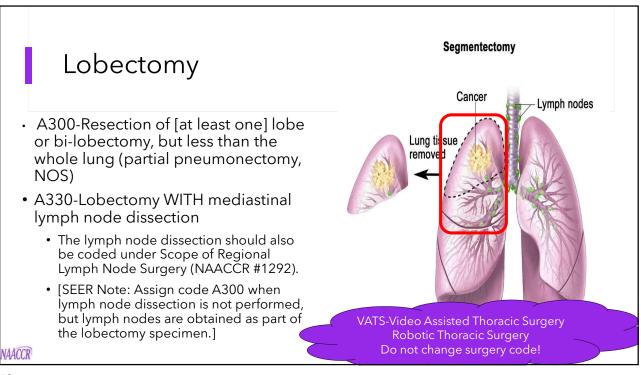

 Lung-RADS<sup>®</sup> is a quality assurance tool designed to standardize lung cancer screening CT reporting and management recommendations, reduce confusion in lung cancer screening CT interpretations, and facilitate outcome monitoring.

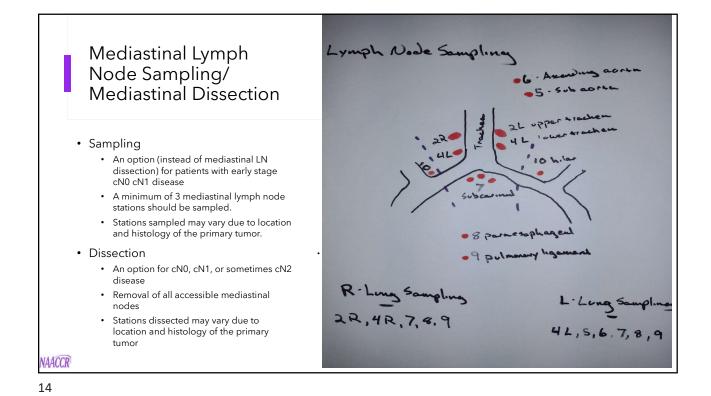

#### Lung-RADS<sup>®</sup> Category Descriptor


- 0-Incomplete
- 1-Negative (no lung nodules)
- 2-Benign
- 3-Probably benign
- 4A-Suspicous
- 4B-Very Suspicious
- 4X
- S-Significant or Potentially Significant

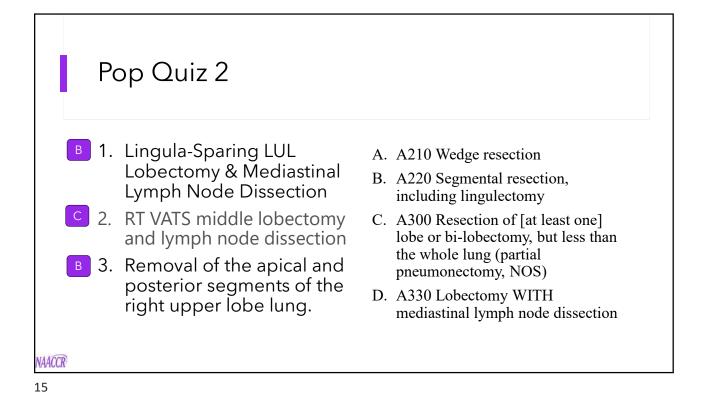

American College of Radiology Committee on Lung-RADS<sup>®</sup>. Lung-RADS Assessment Categories 2022. NAACCR<sup>A</sup>vailable at <u>https://www.acr.org/-/media/ACR/Files/RADS/Lung-RADS/Lung-RADS-2022.pdf</u>.

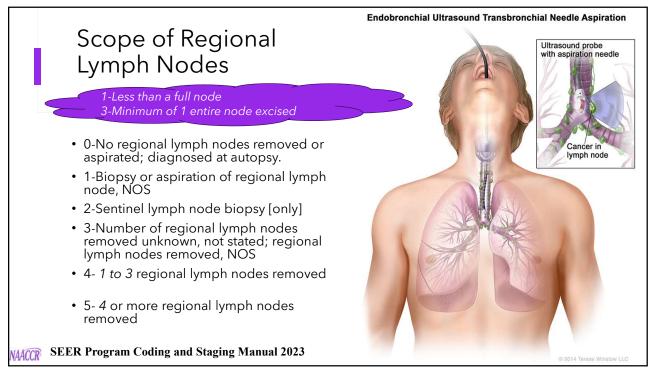

7



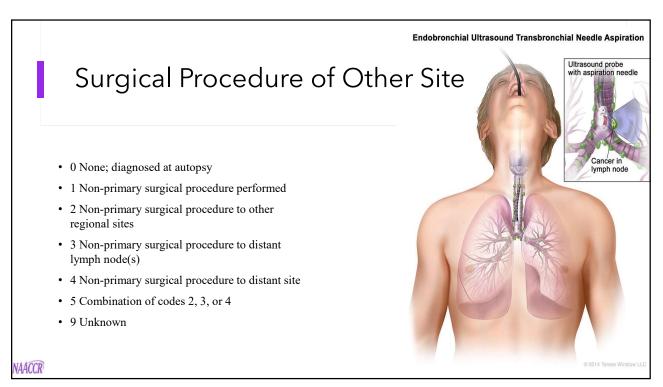



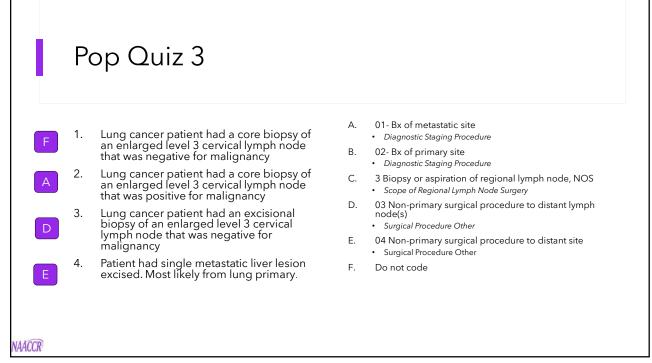


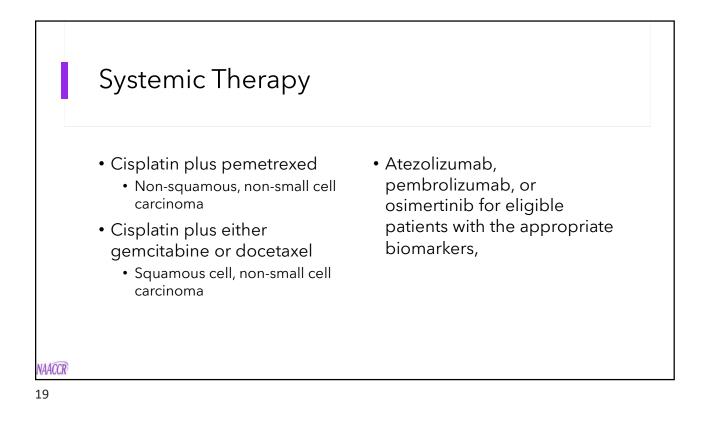



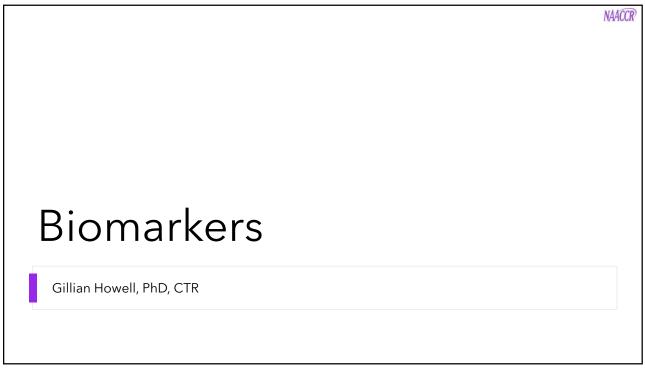







\_\_\_\_\_

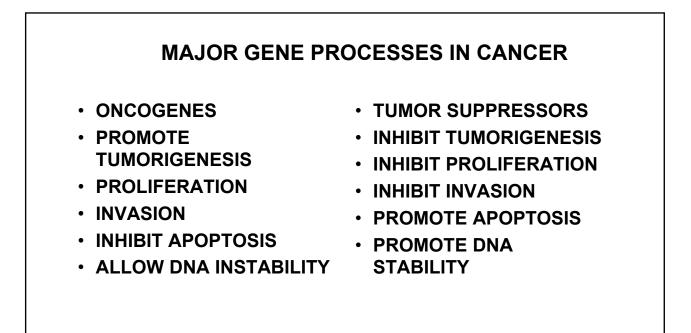






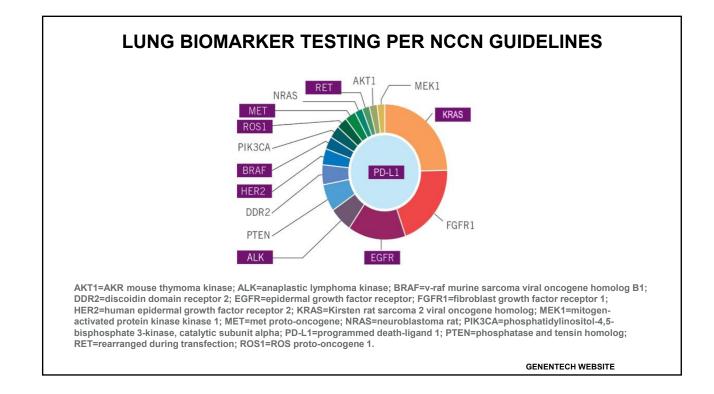


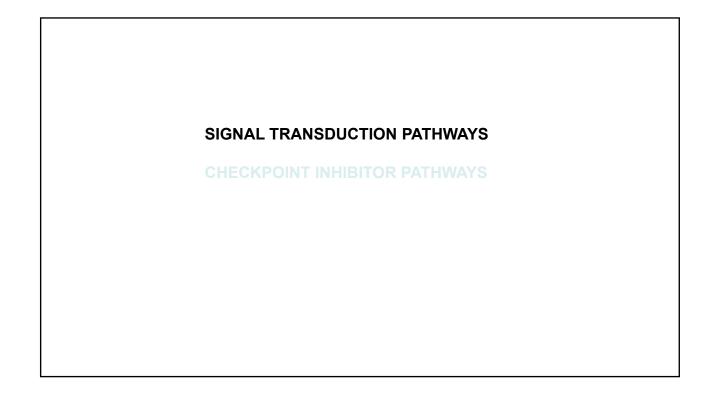



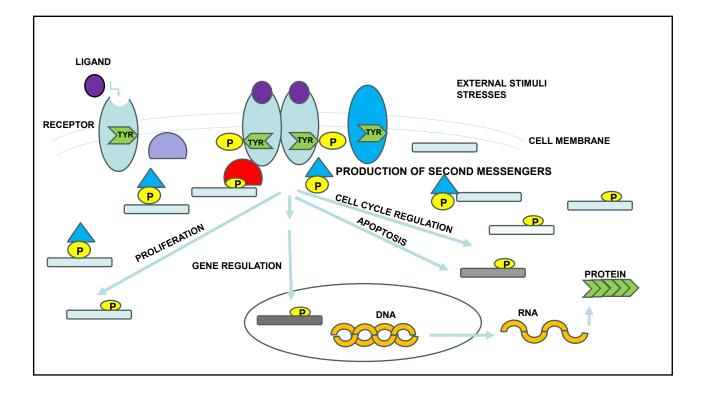


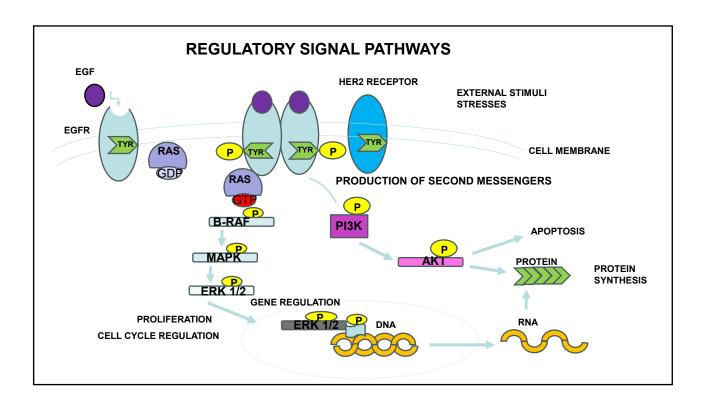

#### GENETIC TESTING IN LUNG CANCER Gillian Howell PhD, CTR,

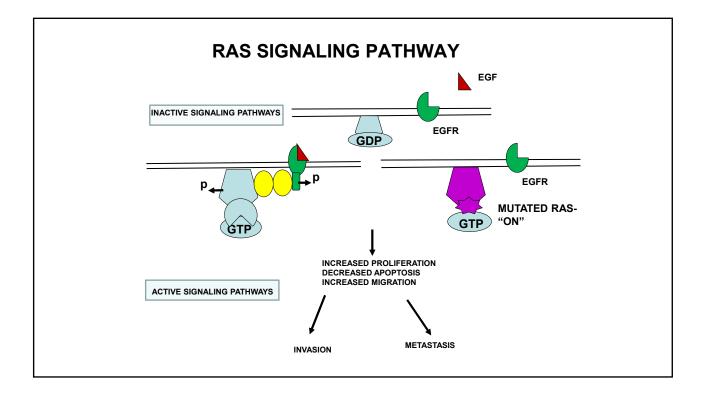
Tumor Registry, NE Methodist Hospital, Omaha NE

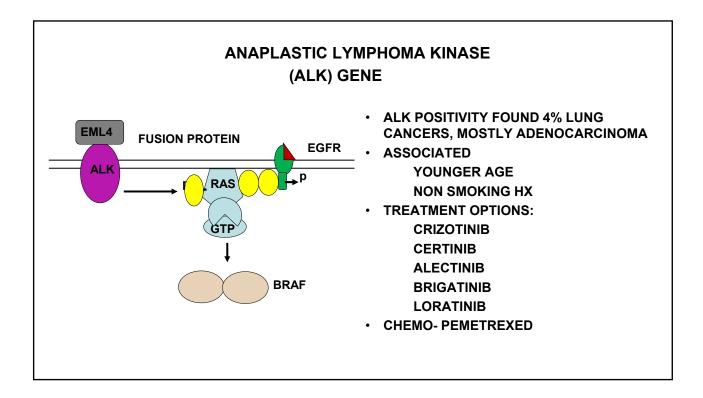

## CANCER: ORGAN SPECIFIC DISEASE TO GENETIC DISEASE PRIOR TO THE DEVELOPMENT OF FIELD OF GENETICS, CANCER CONSIDERED AN ORGAN SPECIFIC DISEASE WE CHARACTERIZE OF TUMOR BY SIZE, GRADE AND INVASIVENESS, LNS, REGIONAL SPREAD OR DISTANT METSTASIS- STAGING IN STAGING TRY TO GROUP CANCER CHARACTERISTICS INTO GROUPS WITH SIMILAR PROGNOSIS DOES NOT INFORM ABOUT THE INTRINSIC "AGGRESSIVENESS" CHARACTERISTICS OF THE TUMOR MOLECULAR STUDIES INFORM "PERSONALIZED" TREATMENTS

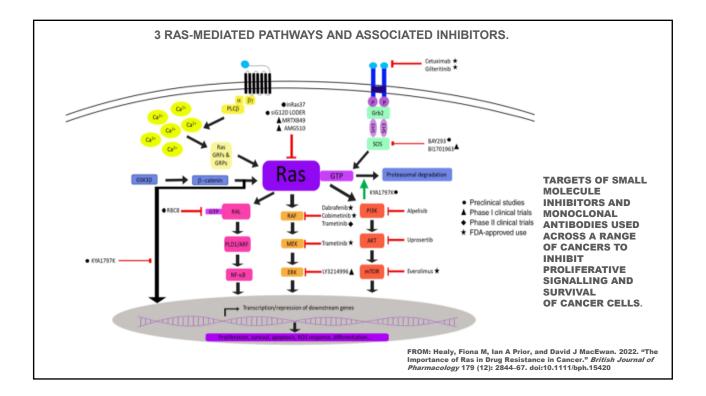


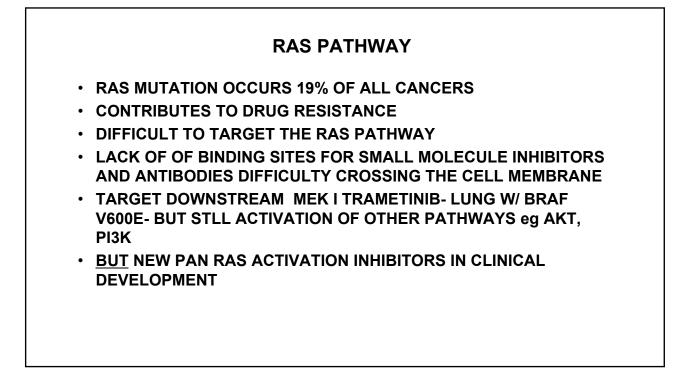



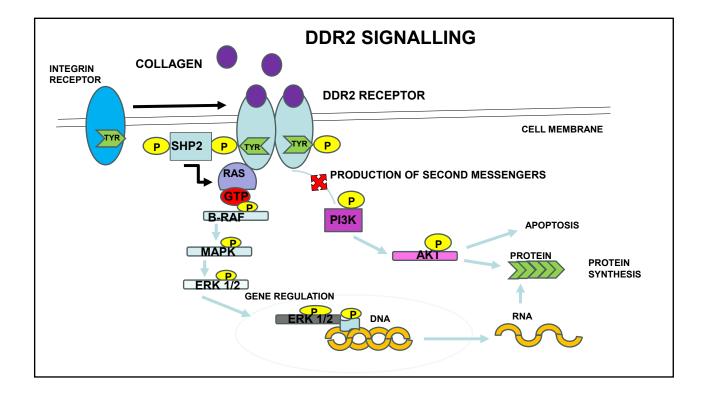


- HOWEVER, WHAT ARE WE CODING AND WHY IS IT IMPORTANT?
- COLLECT DATA FOR RESEARCHERS TO ID LINKS BETWEEN SPECIFIC GENE MUTATIONS
- IDENTIFY VIABLE GENETIC TARGETS SPECIFIC MUTATIONS IN SPECIFIC CANCERS
- HOW NEW THERAPIES PERFORMING IN THE PRESENCE OF THESE MUTATIONS
- INFORM TREATMENT GUIDELINES
- LUNG CANCER WAS AMONG FIRST CANCERS WHERE TARGETED THERAPIES
- WERE TESTED

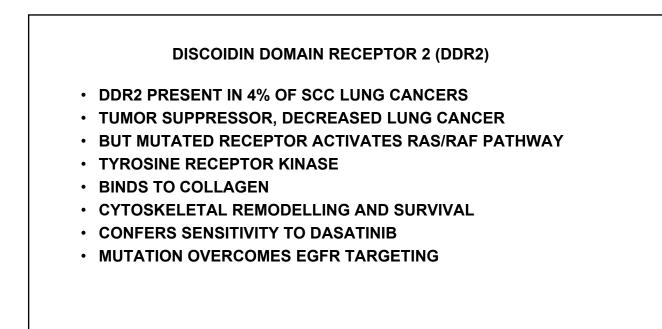


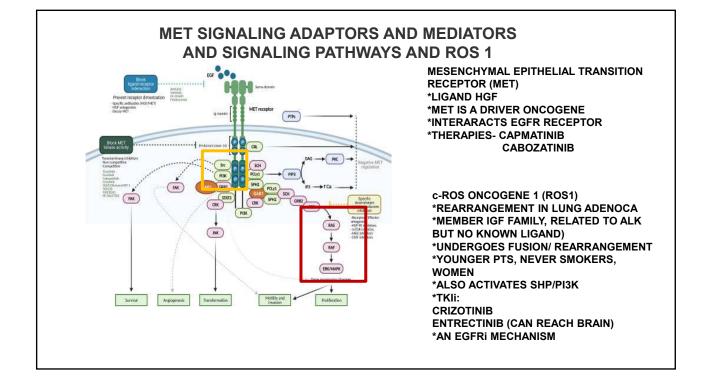



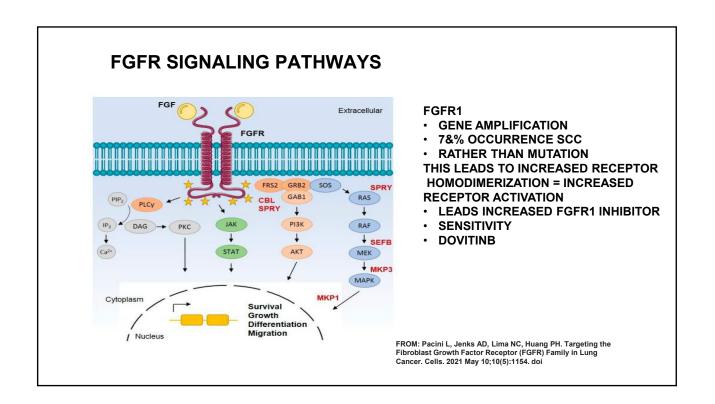



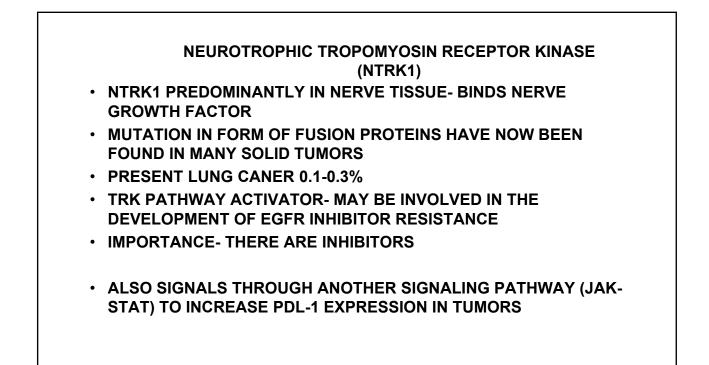



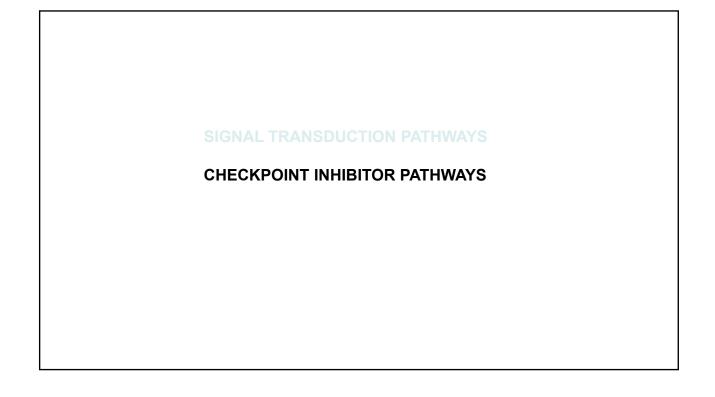



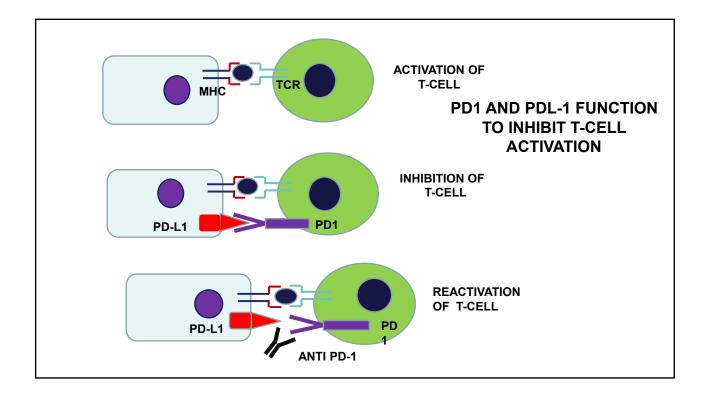



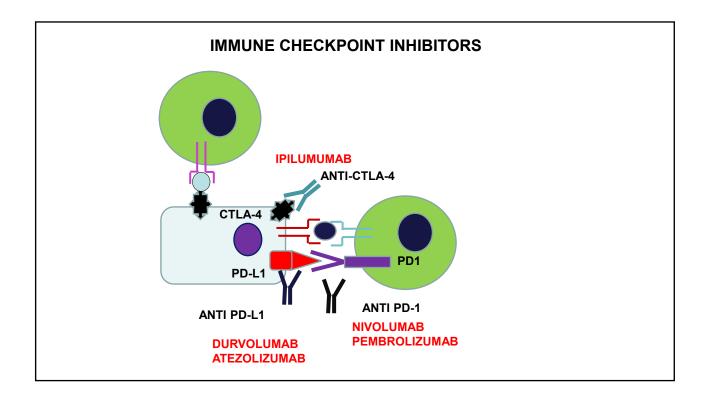



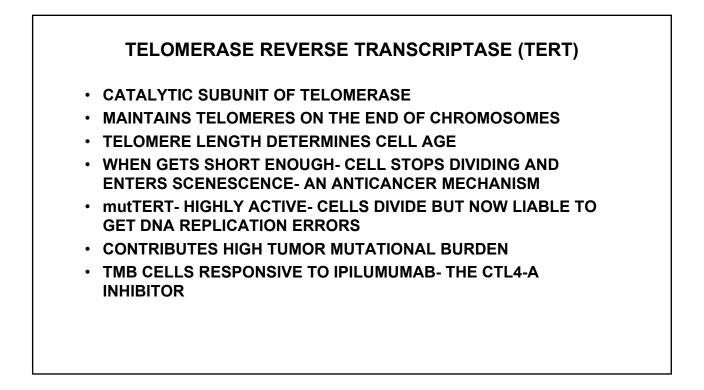



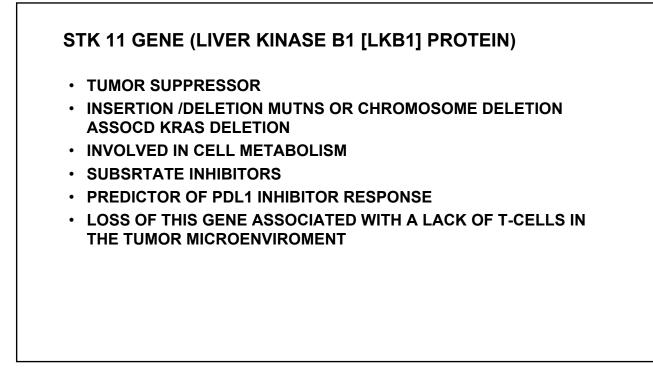



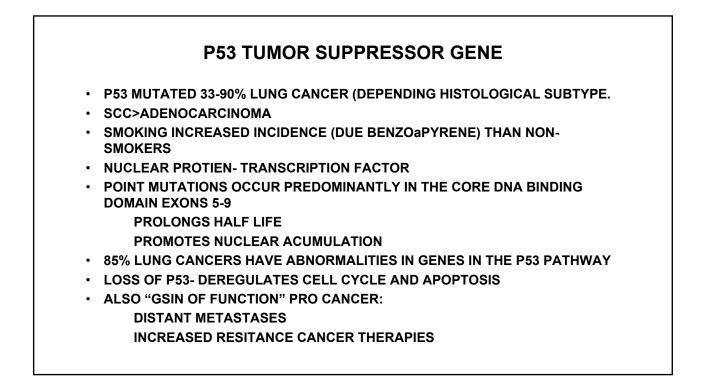



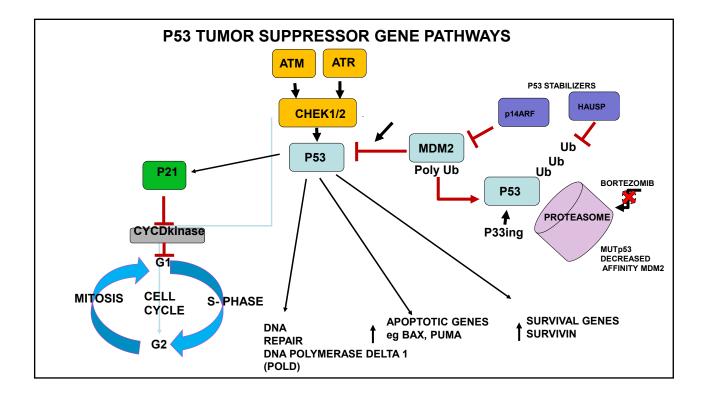


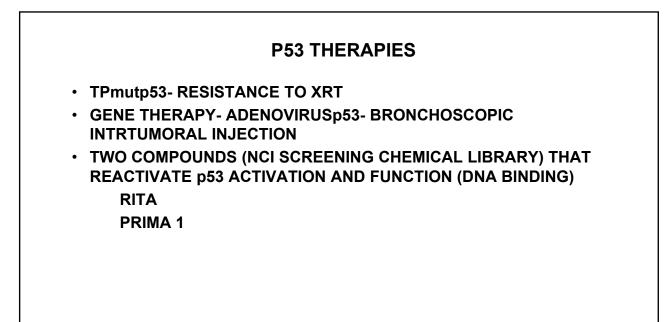




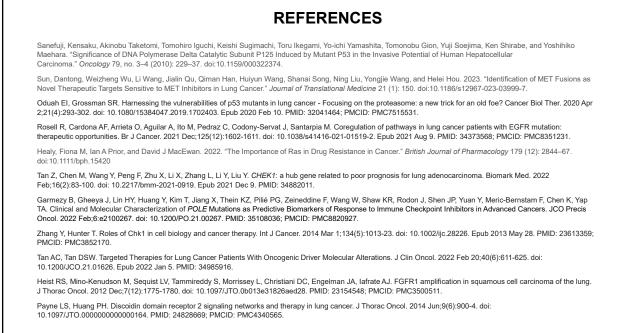




#### THE DNA POLYMERASE EPSILON (POLE) GENE


- ENCODES A SUBUNIT OF DNA POLYMERASE
- MUTATION OCCURS 3-4% NSCLC- ADENOCARCINOMA
- MUTATION IS ASSOCIATED WITH FAVORABLE PROGNOSIS

#### ASSOCIATED:


HIGH TUMOR MUTATION BURDEN (TMB) HIGH INFILTRATION OF T-CELLS INTO THE TUMOR MICROENVIROMENT





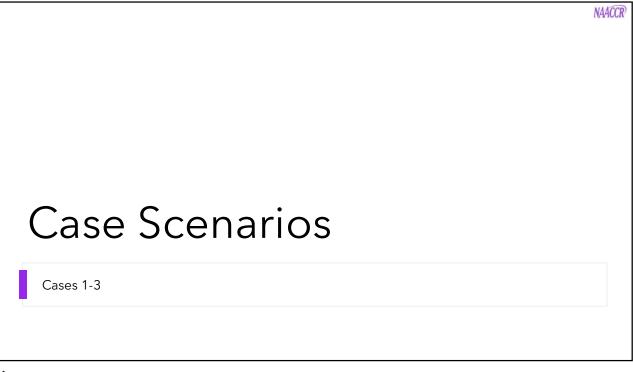


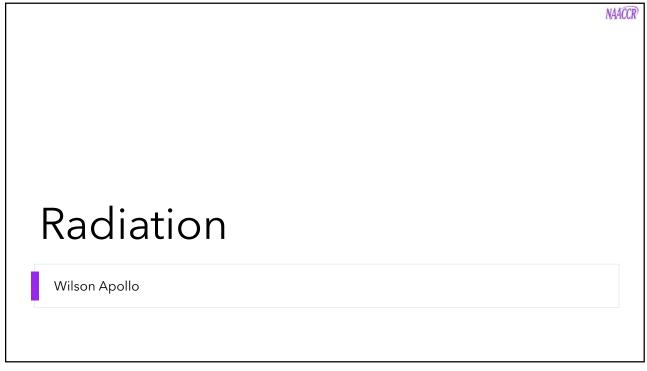
| CONCLUSIONS                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>TARGETED THERAPIES HOLD PROMISE IN THE TREATMENT OF<br/>LUNG CANCER</li> <li>HOWEVER, THERE ARE CHALLENGES GIVEN THE ABILITY OF<br/>THE CANCER TO ACQUIRE NEW MUTATIONS AND SWITCH<br/>SIGNALING PATHWAYS</li> <li>GENETIC TESTING INFORMS BOTH INITIAL AND SUBSEQUENT<br/>TREATMENTS</li> </ul> |
|                                                                                                                                                                                                                                                                                                           |

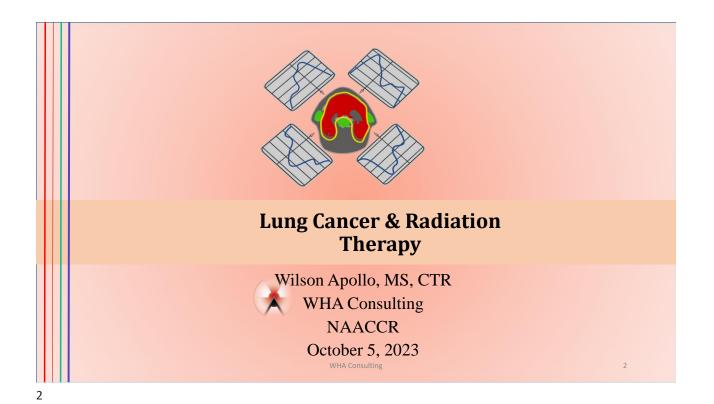


Pacini L, Jenks AD, Lima NC, Huang PH. Targeting the Fibroblast Growth Factor Receptor (FGFR) Family in Lung Cancer. Cells. 2021 May 10;10(5):1154. doi: 10.3390/cells10051154. PMID: 34068816; PMCID: PMC8151052.

Gendarme S, Bylicki O, Chouaid C, Guisier F. ROS-1 Fusions in Non-Small-Cell Lung Cancer: Evidence to Date. Curr Oncol. 2022 Jan 28;29(2):641-658. doi: 10.3390/curroncol29020057. PMID: 35200557; PMCID: PMC8870726.


Garcia-Robledo JE, Rosell R, Ruíz-Patiño A, Sotelo C, Arrieta O, Zatarain-Barrón L, Ordoñez C, Jaller E, Rojas L, Russo A, de Miguel-Pérez D, Rolfo C, Cardona AF. KRAS and MET in non-small-cell lung cancer: two of the new kids on the 'drivers' block. Ther Adv Respir Dis. 2022 Jan-Dec;16:17534666211066064. doi: 10.1177/17534666211066064. PMID: 35098800; PMCID: PMC8808025.


Mogi A, Kuwano H. TP53 mutations in nonsmall cell lung cancer. J Biomed Biotechnol. 2011;2011:583929. doi: 10.1155/2011/583929. Epub 2011 Jan 18. PMID: 21331359; PMCID: PMC3035360.


Salomao N, Karakostis K, Hupp T, Vollrath F, Vojtesek B, Fahraeus R. What do we need to know and understand about p53 to improve its clinical value? J Pathol. 2021 Jul;254(4):443-453. doi: 10.1002/path.5677. Epub 2021 May 6. PMID: 33826155.

Pierce, B.A. (2008) Genetics: A Conceptual Approach (Freeman Press)

Hallberg B, Palmer RH. The role of the ALK receptor in cancer biology. Ann Oncol. 2016 Sep;27 Suppl 3:iii4-iii15. doi: 10.1093/annonc/mdw301. PMID: 27573755.







### Part 1: Lung Cancer-the picture

#### Table 1. Estimated Number\* of New Cancer Cases and Deaths by Sex, US, 2023

|                          | Esti       | Estimated New Cases |         |            | Estimated Deaths |        |  |
|--------------------------|------------|---------------------|---------|------------|------------------|--------|--|
|                          | Both sexes | Male                | Female  | Both sexes | Male             | Female |  |
| Respiratory system       | 256,290    | 131,150             | 125,140 | 132,330    | 71,170           | 61,160 |  |
| Larynx                   | 12,380     | 9,900               | 2,480   | 3,820      | 3,070            | 750    |  |
| Lung & bronchus          | 238,340    | 117,550             | 120,790 | 127,070    | 67,160           | 59,910 |  |
| Other respiratory organs | 5,570      | 3,700               | 1,870   | 1,440      | 940              | 500    |  |



### Non-small cell lung cancer(NSCLC)

- Comprises ~84% of all lung cancer cases,
- Subtypes of NSCLC;
  - a. Adenocarcinoma, 40-50% (more peripherally)
  - b. Squamous cell carcinoma (SCC), 25% (centrally located)
  - c. Large cell carcinoma, 10%
  - d. Other (large cell neuroendocrine carcinomas, sarcomatoid carcinomas)



### Small cell lung cancer(SCLC)

- Comprises ~15% of all lung cancer cases,
  - a. More aggressive than NSCLC, prone to early metastasis
  - b. Most patients with metastatic disease @ time of diagnosis,
  - c. 1/3 of pts with early-stage disease @ time of diagnosis,
  - d. Poor prognosis,
  - e. However, 6.7% decrease in mortality when low-dow CT screening is used for heavy smokers.



## Small cell lung cancer(SCLC)

#### Supplemental Table 2. ICD-O-3 Histology Codes for Lung Cancer Subtype

| Subtypes               | ICD-O-3 Histology Codes                                                                  |
|------------------------|------------------------------------------------------------------------------------------|
| Non-small-cell lung    | 8010 (carcinoma, NOS), 8012(large cell ca, NOS), 8013(large cell neuroendocrine ca),     |
| cancer                 | 8020(carcinoma, undifferentiated, NOS), 8046 (NSCLC0, 8050–8052, 8070–8078, 8140         |
|                        | (adenocarcinoma, NOS), 8141 (scirrhous adenoca), 8143 (superficial spreading adenoca),   |
|                        | 8147 (basal cell adenoca), 8250–8255, 8260, 8310 (clear cell adenoca), 8430 (mucoid      |
|                        | epidermoid ca), 8480 (mucinous adenoca), 8481 (mucin-producing adenoca), 8490            |
|                        | (signet-ring cell ca), 8560 (adenosquamous ca), and 8570–8575                            |
| Small-cell lung cancer | 8002 (malignant tumor, small cell type), 8041 (small cell carcinoma, NOS) 8042 (Oat cell |
|                        | carcinoma), 8043 (small cell carcinoma, fusiform cell), 8044 (small cell carcinoma,      |
|                        | intermed cell), and 8045 (combined small cell carcinoma).                                |



### The Challenge-where to start?

| • Linac                                                                                                                                                              | • ZOFT Axxent                                                                                                             | • Field in Field | • GRID therapy                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------|
| <ul> <li>Gamma Knife</li> <li>Cyberknife</li> <li>IGRT</li> <li>SBRT</li> <li>VMAT</li> <li>SRS</li> <li>Gamma Tiles<br/>(START)</li> <li>Zeiss Intrabeam</li> </ul> | <ul> <li>Mammosite</li> <li>I-125 eye plaques<br/>(EPBT)</li> <li>Pd-103 eye<br/>plaques</li> <li>Drana braast</li> </ul> | • Cone beam CT   | <ul> <li>Lattice therapy</li> <li>ART (adaptive RT)</li> <li>Hybrid RT</li> </ul> |



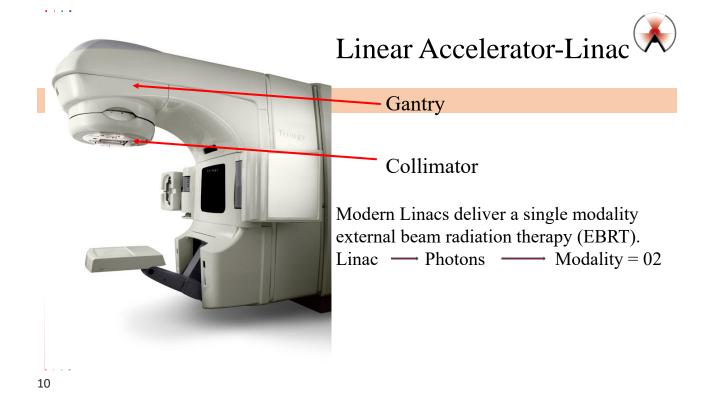
### Total dose?

• Pt presented w/ a left lung primary, with mets to contralateral lung and T-spine.

#### **RT** Completion Summary

| Plan ID      | Energy  | Fractions | Dose/fx (cGy) | Total Dose delivered<br>(cGy) | Start Date | End Date |
|--------------|---------|-----------|---------------|-------------------------------|------------|----------|
| Lung, LUL    | 6X/SBRT | 4         | 1,200         | 4,800                         | 3/6/23     | 3/9/23   |
| Lung, RLL    | 6X/SBRT | 5         | 600           | 3,000                         | 3/6/23     | 3/10/23  |
| T9-T10 spine | 6X/SBRT | 5         | 600           | 3,000                         | 3/13/23    | 3/17/23  |

| Number of Phases of Rad Treatment | (03) 3 phases                                    |
|-----------------------------------|--------------------------------------------------|
| Radiation Treatment Discontinued  | (01) Radiation treatment completed as prescribed |
| Total Dose                        | (004800)                                         |


8



## KNOW THE EQUIPMENT YOUR FACILITY USES!!

"Where is the Data? (STORE 2023, p. 425).

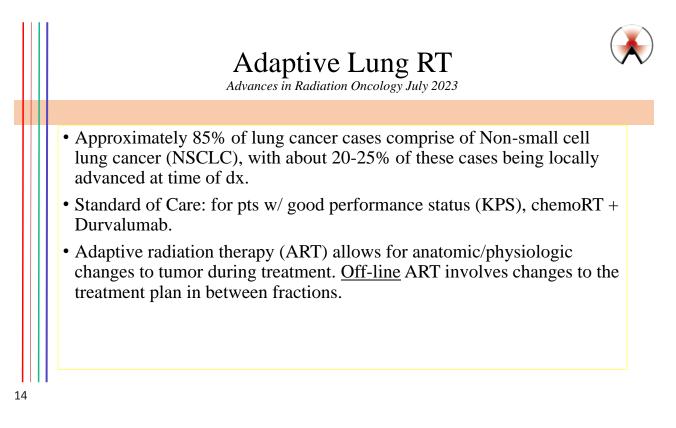
Section contains useful suggestions on where to find the RT data needed to accurately code RT treatments.

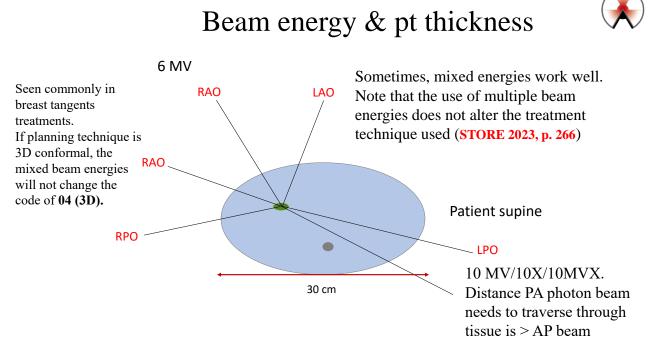


# Linear Accelerator-Linac Accelerator-Linac Planning Technique

Modern Linacs can deliver RT treatments via <u>multiple planning techniques</u>, including 2D, 3D Conformal, IMRT (VMAT/rotational/arc therapy), Stereotactic Body Radiation Therapy (SBRT), SRS, Adaptive online/Adaptive off-line EBRT (STORE 2023, p. 259)




## Reach out to your Rad Onc Dept and cultivate a rapport with their staff




#### SRS for brain mets in pts w/ SCLC

- Pt's diagnosed w/ SCLC tend to experience rapid tumor growth and early onset of brain mets (BM), 10% @ time of dx and 50% within 2 yrs from dx.
- More likely to see prophylactic cranial irradiation (PCI) in this subset of pts,
- SRS more effective in pts w/ 5 or less brain mets lesions (better local control rates),
- For pts w/ >5 brain mets lesions, WBRT preferred

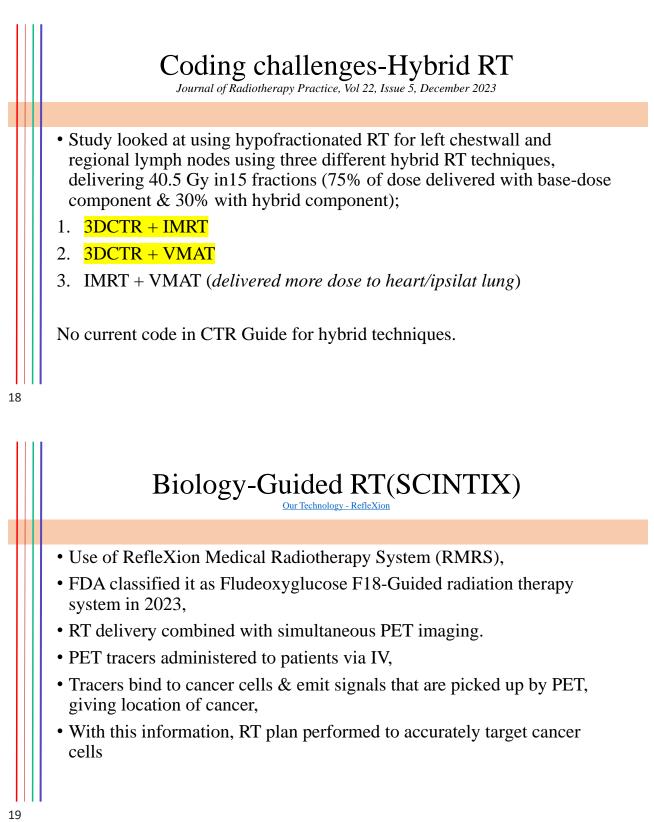
Advances in Radiation Oncology (2023) 8, 101237







### Adaptive Lung RT...


Advances in Radiation Oncology July 2023

- Prescribed dose= 60 Gy.
- Of 25 pts in study, 10 pts had adapted plans with the remaining 15 used as control group.
- All pts on concurrent chemo (carboplatin, paclitaxel),
- Most pts on pembrolizumab (N-15), 5 on ipilimumab & nivolumab; 3 on single agent nivolumab; 2 on single agent durvalumab.
- 32 clinical trials currently using online and offline ART.

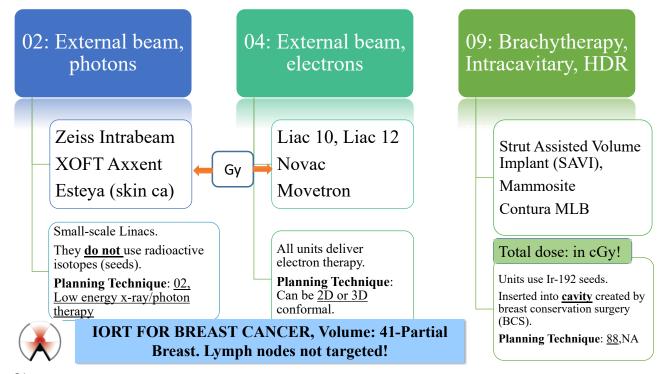


## Adaptive Lung RT-Conclusions Advances in Radiation Oncology July 2023

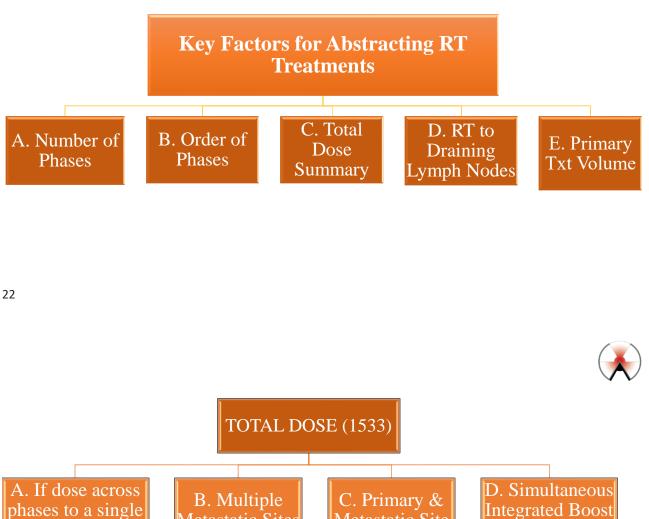
- Preliminary findings suggest ART could reduce impact of toxicity associated with chemo & immunotherapy treatment for lung cancer.
- Phase II trial (NCT04751747) currently under way looking at role of ART and toxicity in patients with more locally advanced lung cancer undergoing adjuvant chemo/immunotherapy.



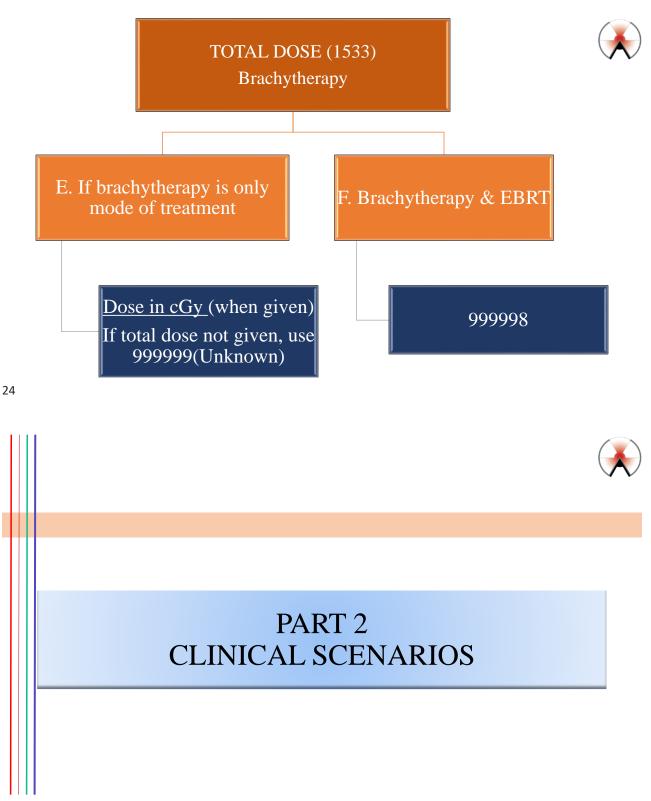
## Biology-Guided RT(SCINTIX, X1)




J Appl Clin Med Phys. 2022 June; 23(6)


- Unit consists of a Linac (6 MV), fan-beam KVCT (for imaging), PET imaging,
- Addresses tumor motion,
- Currently calibrated for treating lung primaries/mets and bone mets,

Key coding points:


- Planning techniques include SBRT, IMRT,
- RT delivered via **photons**.













## Case 1: LT Lung SCC

71 yr-old male w/ h/o HTN, HLD, GERD, CAD, who presented w/ intermittent mild cough, nonproductive. Pt also reports some weight loss. Former heavy smoker. 25 PK-YR

Radiation Therapy Treatment Summary:

of lymphatic

However, w/u revealed LN involvement.

| Site    | Energy  | Dose/fx<br>cGy | # fx  | Total dose<br>cGy | Start date | End date  |
|---------|---------|----------------|-------|-------------------|------------|-----------|
| LT lung | 6X/IMRT | 200            | 30/30 | 6,000             | 12/6/2022  | 1/16/2023 |



Cumulative Dose Volume Histogram Relative dose [%] 16.666 83.333 100 100 33.333 50 66.666 Ratio of Total Structure Volume [%] 80 60 DVH Structure 40 Esophagus SpinalCord PTV\_6000 20 Heart Lung\_R Lungs-iCTV

4000

Case 1: LT Lung SCC

28

0

1000

2000

3000

Dose [cGy]

**Case 1-Lung** 

| Seg     | #                                     | Field                    | Code/Definition                    |  |
|---------|---------------------------------------|--------------------------|------------------------------------|--|
|         | 1                                     | Rad/Surg Sequence        | 0 No RT and/or surgical procedures |  |
|         | 2                                     | Reason No Rad            | 0 Radiation was admin              |  |
| ≥       | 3                                     | Location of Rad          | All RT at this facility            |  |
| na      | 4                                     | Date RT Started/Flag     | 12/06/2022                         |  |
| Summary | 5                                     | Date RT Ended/Flag       | 01/16/2023                         |  |
| Su      | 6                                     | Number of Phases of RT   | 01                                 |  |
|         | 7                                     | RT Discontinued Early    | 01 Radiation completed             |  |
|         | 8                                     | Total Dose               | 006000                             |  |
|         | 9                                     | Primary Treatment Volume | 30 Lung/bronchus                   |  |
|         | 10                                    | Rad to Draining LNs      | 02 Thoracic LN region              |  |
| e 1     | 11 Treatment Modality                 |                          | 02 Photons                         |  |
| Phase 1 | · · · · · · · · · · · · · · · · · · · |                          | 05 IMRT                            |  |
| F       | 13 Dose per Fraction                  |                          | 00200                              |  |
|         | 14                                    | Number of Fractions      | 030                                |  |
|         | 15                                    | Phase I Total Dose       | 006000                             |  |
|         | 16                                    | Primary Treatment Volume | 00                                 |  |
|         | 17                                    | Rad to Draining LNs      |                                    |  |
| N<br>N  | 18                                    | Treatment Modality       | 00                                 |  |
| Phase   | 19                                    | Planning Technique       |                                    |  |
| Ъ       | 20                                    | Dose per Fraction        |                                    |  |
|         | 21                                    | Number of Fractions      |                                    |  |
|         | 22                                    | Phase II Total Dose      |                                    |  |
|         | 23                                    | Primary Treatment Volume |                                    |  |
|         | 24                                    | Rad to Draining LNs      |                                    |  |
| ŝ       | 25                                    | Treatment Modality       |                                    |  |
| Phase 3 | 26                                    | Planning Technique       |                                    |  |
| Ч       | 27                                    | Dose per Fraction        |                                    |  |
|         | 28                                    | Number of Fractions      |                                    |  |
|         | 29                                    | Phase III Total Dose     |                                    |  |

### **Case 1 Rationale:**

6000

5000

**#10**: CT simulation images revealed involved LNs coverage. A check with radiation oncologist confirmed coverage. PET/CT positive for LN involvement. Level 7 LN FNA positive for SCC.

**#11**: Beam energy of 6X indicative of photon therapy.

#12: IMRT plan clearly stated in RT completion summary.



## Case 2: RT Lung

69 yr-old female w/ h/o heavy smoking hx in the past (quit two yrs ago), who presented w/ screen-detected right lung cancer during low-dose screening chest CT. Patient is asymptomatic. RT post surgery.

Radiation Therapy Treatment Summary:

| Site    | Energy  | Dose/fx<br>cGy | # fx  | Total dose<br>cGy | Start date | End date |
|---------|---------|----------------|-------|-------------------|------------|----------|
| RT lung | 6X/VMAT | 200            | 30/30 | 6,000             | 2/20/23    | 4/3/23   |

Five <u>non-coplanar</u> beams technique used.

30

Case 2-Lung

| Seg     |    |                          | Code/Definition          |
|---------|----|--------------------------|--------------------------|
|         | 1  | Rad/Surg Sequence        | 3 RT after surgery       |
|         | 2  | Reason No Rad            | 0 Radiation was admin    |
| 2       | 3  | Location of Rad          | All RT at this facility  |
| na      | 4  | Date RT Started/Flag     | 02/20/2023               |
| Summary | 5  | Date RT Ended/Flag       | 04/03/2023               |
| Su Su   | 6  | Number of Phases of RT   | 01                       |
|         | 7  | RT Discontinued Early    | 01 Radiation completed   |
|         | 8  | Total Dose               | 006000                   |
|         | 9  | Primary Treatment Volume | 30 Lung/bronchus         |
|         | 10 | Rad to Draining LNs      | 00 No RT to draining LNs |
| Phase 1 | 11 | Treatment Modality       | 02 Photons               |
| as      | 12 | Planning Technique       | 05 IMRT                  |
| 占       | 13 | Dose per Fraction        | 00200                    |
|         | 14 | Number of Fractions      | 030                      |
|         | 15 | Phase I Total Dose       | 006000                   |
|         | 16 | Primary Treatment Volume | 00                       |
|         | 17 | Rad to Draining LNs      |                          |
| 2       | 18 | Treatment Modality       | 00                       |
| Phase   | 19 | Planning Technique       |                          |
| 4       | 20 | Dose per Fraction        |                          |
|         | 21 | Number of Fractions      |                          |
|         | 22 | Phase II Total Dose      |                          |
|         | 23 | Primary Treatment Volume |                          |
|         | 24 | Rad to Draining LNs      |                          |
| 6       | 25 | Treatment Modality       |                          |
| Phase 3 | 26 | Planning Technique       |                          |
| Р Ч     | 27 | Dose per Fraction        |                          |
|         | 28 | Number of Fractions      |                          |
|         | 29 | Phase III Total Dose     |                          |

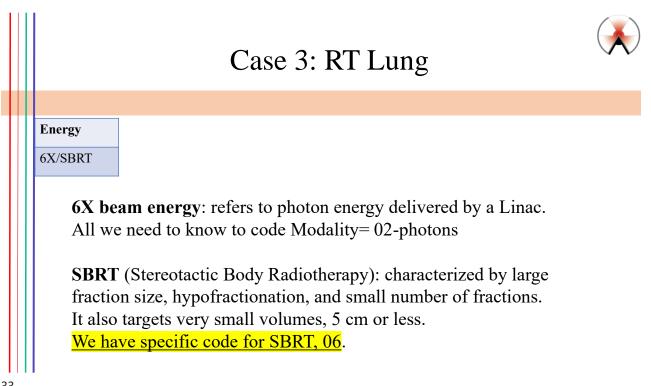
### Case 2 Rationale:

#9: Code to primary site, even if primary site is resected,
#10: No lymph nodes involvement documented.
#11: Beam energy of 6X is indicative of photon therapy.

**#12**: VMAT (arc therapy) is delivered via IMRT technique.



## Case 3: RT Lung


 60 yr-old male w/ h/o GERD, HTN, HLD, who presented w/ interval change in size of known right upper lobe lung nodule. Former heavy smoker. Social etoh. -FHX.

Radiation Therapy Treatment Summary:

| Site    | Energy  | Dose/fx<br>cGy | # fx | Total dose<br>cGy | Start date | End date |
|---------|---------|----------------|------|-------------------|------------|----------|
| RT lung | 6X/SBRT | 800            | 5/5  | 4,000             | 11/28/22   | 12/2/23  |

<u>Note</u>: There were no LNs involved clinically or pathologically. Given small volumes targeted by SBRT, LNs not in irradiated field.





| 00           |
|--------------|
|              |
| <u> </u>     |
| _            |
| -            |
|              |
|              |
|              |
|              |
|              |
|              |
| <b>(1)</b>   |
| <b>U</b>     |
| in           |
| ~            |
| σ            |
|              |
| $\mathbf{O}$ |
|              |

| Seg            | #  | Field                    | Code/Definition          |  |
|----------------|----|--------------------------|--------------------------|--|
|                | 1  | Rad/Surg Sequence        | 3 RT after surgery       |  |
|                | 2  | Reason No Rad            | 0 Radiation was admin    |  |
| 2              | 3  | Location of Rad          | All RT at this facility  |  |
| na             | 4  | Date RT Started/Flag     | 11/28/2022               |  |
| Summary        | 5  | Date RT Ended/Flag       | 12/02/2023               |  |
| Su             | 6  | Number of Phases of RT   | 01                       |  |
|                | 7  | RT Discontinued Early    | 01 Radiation completed   |  |
|                | 8  | Total Dose               | 004000                   |  |
|                | 9  | Primary Treatment Volume | 30 Lung/bronchus         |  |
|                | 10 | Rad to Draining LNs      | 00 No RT to draining LNs |  |
| e 1            | 11 | Treatment Modality       | 02 Photons               |  |
| Phase 1        | 12 | Planning Technique       | 06 SBRT                  |  |
| Ph             | 13 | Dose per Fraction        | 00800                    |  |
|                | 14 | Number of Fractions      | 005                      |  |
|                | 15 | Phase I Total Dose       | 004000                   |  |
|                | 16 | Primary Treatment Volume | 00                       |  |
|                | 17 | Rad to Draining LNs      |                          |  |
| 2              | 18 | Treatment Modality       | 00                       |  |
| 18<br>19<br>20 |    | Planning Technique       |                          |  |
| Ë              | 20 | Dose per Fraction        |                          |  |
| Ч              | 21 | Number of Fractions      |                          |  |
|                | 22 | Phase II Total Dose      |                          |  |
|                | 23 | Primary Treatment Volume |                          |  |
|                | 24 | Rad to Draining LNs      |                          |  |
| ŝ              | 25 | Treatment Modality       |                          |  |
| Phase 3        | 26 | Planning Technique       |                          |  |
| Ч              | 27 | Dose per Fraction        |                          |  |
|                | 28 | Number of Fractions      |                          |  |
|                | 29 | Phase III Total Dose     |                          |  |



#9: Code to primary site, even if primary site is resected,
#10: No lymph nodes involvement documented, clinically and pathologically. Also, when SBRT is used, it does not include lymphatics.
#11: Beam energy of 6X is indicative of photon therapy.
#12: SBRT has its own code.



### Case 4: Primary & metastatic site

• 76-year-old male was initially diagnosed with metastatic right lung cancer.

Radiation Therapy Treatment Summary:

| Site    | Energy | Dose/fx<br>cGy | # fx | Total dose<br>cGy | Start date | End date |
|---------|--------|----------------|------|-------------------|------------|----------|
| RT hip  | 6X/3D  | 800            | 1/1  | 800               | 8/21/23    | 8/21/23  |
| RT lung | 15X/3D | 400            | 5/5  | 2,000             | 8/21/23    | 8/25/23  |

| et |
|----|
| 3  |
| 20 |
| n  |
| -  |
| 4  |
| Se |
| Ca |

ഗ

| Seg     | #  | Field                    | Code/Definition                    |
|---------|----|--------------------------|------------------------------------|
|         | 1  | Rad/Surg Sequence        | 0 No RT and/or surgical procedures |
|         | 2  | Reason No Rad            | 0 Radiation was admin              |
| ≥       | 3  | Location of Rad          | All RT at this facility            |
| Summary | 4  | Date RT Started/Flag     | 08/21/23                           |
| Ē       |    |                          | 08/25/23                           |
| Su      | 6  | Number of Phases of RT   | 02                                 |
|         | 7  | RT Discontinued Early    | 01 Radiation completed             |
|         | 8  | Total Dose               | 002000                             |
| Phase 1 | 9  | Primary Treatment Volume | 30 Lung/bronchus                   |
|         | 10 | Rad to Draining LNs      | 00 No RT to draining LNs           |
|         | 11 | Treatment Modality       | 02 Photons                         |
|         | 12 | Planning Technique       | 04 3D conformal                    |
|         | 13 | Dose per Fraction        | 00400                              |
|         | 14 | Number of Fractions      | 005                                |
|         | 15 | Phase I Total Dose       | 002000                             |
|         | 16 | Primary Treatment Volume | 84 Hip                             |
|         | 17 | Rad to Draining LNs      | 00 No RT to draining LNs           |
| 2       | 18 | Treatment Modality       | 02 Photons                         |
| ase     | 19 | Planning Technique       | 04 3D conformal                    |
| Phase 2 | 20 | Dose per Fraction        | 00800                              |
|         | 21 | Number of Fractions      | 001                                |
|         | 22 | Phase II Total Dose      | 000800                             |
|         | 23 | Primary Treatment Volume | 00                                 |
|         | 24 | Rad to Draining LNs      |                                    |
| ŝ       | 25 | Treatment Modality       | 00                                 |
| ase     | 26 | Planning Technique       |                                    |
| Phase 3 | 27 | Dose per Fraction        |                                    |
|         | 28 | Number of Fractions      |                                    |
|         | 29 | Phase III Total Dose     |                                    |



**#08:** When a primary site and a metastatic site are irradiated, you cannot add the delivered dose from different target volumes to get total dose. As per rule, total dose is dose to primary site.

**#10/17**: In general, when metastatic dz or metastatic site is irradiated, LNs are not included.

**#12/19**: Planning technique is clearly stated in treatment summary. **#23/25**: At our facility, if we do not populate field #25 with zeroes (00), we get an edit.





### Case 5: Gamma Tiles for CNS mets Surgically targeted radiation therapy (**STaRT**)

- FDA-approved therapy. First used in 2021.
- Each tile contains four Cesium-131(Cs-131) gamma rays emitting radioisotope; # of tiles used based on size & location of tumor,
- Biocompatible, permanent,
- Considered Low-dose rate (LDR),
- Surgically inserted into <u>brain cavity</u>, post resection of metastatic disease (case can be made for coding it <u>intracavitary</u>),
- ~ 50% of dose delivered within 10 days post implant,
- 95% of dose delivered within six weeks post implant,
- Applied to high grade gliomas & recurrent meningiomas.





## Case 5: Gamma Tiles for CNS mets

| Txt Site | Energy      | Dose/fx | # of fx | Total<br>dose | Start date | End date |
|----------|-------------|---------|---------|---------------|------------|----------|
| Brain-   | Cs-131      | 5000    | 1       | 5000 cGy      | 8/17/23    | 8/17/23  |
| partial  | Gamma tiles | cGy     |         |               |            |          |

|                         | Seg     | #  | Field                    | Code/Definition                      |
|-------------------------|---------|----|--------------------------|--------------------------------------|
|                         |         | 1  | Rad/Surg Sequence        | 0 No RT and/or surgical procedures   |
|                         |         | 2  | Reason No Rad            | 0 Radiation was admin                |
|                         | ~       | 3  | Location of Rad          | All RT at this facility              |
|                         | Summary | 4  | Date RT Started/Flag     | 08/17/23                             |
|                         | Ē       | 5  | Date RT Ended/Flag       | 08/17/23                             |
|                         | Su      | 6  | Number of Phases of RT   | 01                                   |
| ഗ                       |         | 7  | RT Discontinued Early    | 01 Radiation completed               |
| case <b>5-Lung mets</b> |         | 8  | Total Dose               | 005000                               |
| Ð                       |         | 9  | Primary Treatment Volume | 13 Brain-Limited                     |
|                         |         | 10 | Rad to Draining LNs      | 00 No RT to draining LNs             |
|                         | e 1     | 11 | Treatment Modality       | 08 Brachytherapy, intracavitary, LDR |
| 50                      | Phase 1 | 12 | Planning Technique       | 88 NA                                |
|                         | Чd      | 13 | Dose per Fraction        | 05000                                |
| 5                       |         | 14 | Number of Fractions      | 001                                  |
| -                       |         | 15 | Phase I Total Dose       | 005000                               |
| <b>6</b>                |         | 16 | Primary Treatment Volume | 00                                   |
|                         |         | 17 | Rad to Draining LNs      |                                      |
| Ð                       | 2       | 18 | Treatment Modality       | 00                                   |
| S                       | Phase   | 19 | Planning Technique       |                                      |
| N I                     | μÄ      | 20 | Dose per Fraction        |                                      |
|                         |         | 21 | Number of Fractions      |                                      |
|                         |         | 22 | Phase II Total Dose      |                                      |
|                         |         | 23 | Primary Treatment Volume |                                      |
|                         |         | 24 | Rad to Draining LNs      |                                      |
|                         | е<br>Э  | 25 | Treatment Modality       |                                      |
|                         | Phase 3 | 26 | Planning Technique       |                                      |
|                         | Ч       | 27 | Dose per Fraction        |                                      |
|                         |         | 28 | Number of Fractions      |                                      |
|                         |         | 29 | Phase III Total Dose     |                                      |

### Case 5 Rationale:

#08: If brachytherapy dose is given in cGy, code it here.
#9: Only a small brain volume is targeted with Gamma Tiles.
#11: Cs-131 is a low-dose rate (LDR) radioisotope. Tiles are surgically implanted into resection cavity.
#13/15: If dose is given in cGy (absorbed dose) unit, code it.

### GRID Therapy Spatial Fractionated RT

- Not a novel approach (around since the 1990s); modern RT delivery equipment makes use of GRID therapy more precise,
- Dose distribution of high dose/low dose regions delivered in grid pattern,
- Delivers high and low dose to separate target volumes within the primary site,
- Initially used for palliative intent; now seen more for curative intent in H&N, lung, cervical cancer, sarcoma, melanoma,
- Used w/ conventional fractionated RT, w/ IMRT recommended,
- H&N SFRT dose: 15 Gy in single fx to bulky LNs,
- Total dose typically ~70 Gy,

### GRID Therapy Spatial Fractionated RT

- Question remains for CTRs (ODS?):
- a. What modality and planning technique is used?
- b. Are lymphatics included in irradiated fields?

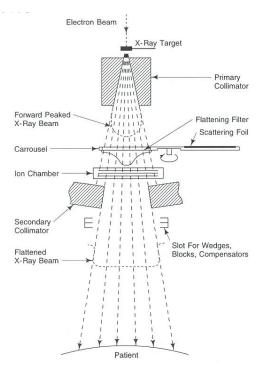
### Back to the basics;

What equipment was used? If a Linac, then it's **photon** modality (02). Look for beam energy to confirm, such as 6X, 6MV, 12X, 12 MV, 10 MVX.

Look for key words such as VMAT, Arc, conformal, etc.



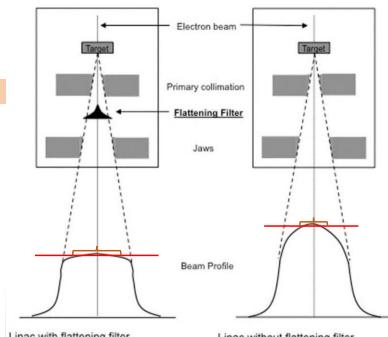
1111




### FFF Flattening Filter-Free

How do you code a FFF technique?




42



# Flattening Filter-Free(FFF)

|                                                  | Varian<br>(TrueBeam) |        | Elekta (Versa)       |        |
|--------------------------------------------------|----------------------|--------|----------------------|--------|
| Nominal E                                        | 6 FFF                | 10 FFF | 6 FFF                | 10 FFF |
| Filtration                                       | 0.8 mm Brass         |        | 2 mm Stainless steel |        |
| $d_{max}$ (cm)                                   | 1.5                  | 2.3    | 1.7                  | 2.4    |
| Dose @ 10<br>cm depth (%)                        | 64.2                 | 71.7   | 67.5                 | 73     |
| Max dose<br>rate @ d <sub>max</sub><br>(cGy/min) | 1400                 | 2400   | 1400                 | 2200   |

Flattening filter in the path of a <u>photon beam</u> serves to "flatten" the dose distribution at a specified depth within the patient (target volume).



Linac with flattening filter, corresponding dose profile

Linac without flattening filter, corresponding dose profile

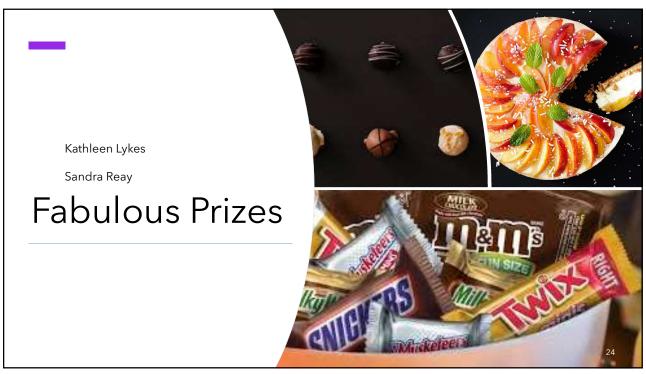
### FFF...

- With flattening filter, homogeneous area at specified depth is longer (flatter), allowing for larger volume to be irradiated.
- Without flattening filter, homogeneous area is much smaller, more suitable for small target volumes.

# FFF Advantages

- <u>Higher dose rates (2-4 times faster than conventional treatments with FF)</u> = reduced time patient is on the treatment couch; less likely that target/tumor motion may come into play; more patients can be treated in same time frame (more profitable for facilities),
- Targets smaller volumes; suitable for SBRT plans,
- <u>Reduces out of field dose (scatter dose outside of planned target volume)</u>,

### Abstracting Points:


- ≻FFF <u>is not</u> a planning technique that we code,
- ➢More important is the <u>delivery system used</u> with FFF, <u>Linac in photon mode</u>,
- Planning technique can be 3D, IMRT, SBRT, SRS; still need to review completion summary or consult with radiation oncologist on this.

